Course title: Mechanics II

Course Basic Information		
Academic Unit:	Civil Engineering	
Course title:	Mechanics II	
Level:	Bachelor	
Course Status:	C compulsory	
Year of Study:	Second (II), Semester III	
Number of Classes per Week:	2+2	
ECTS Credits:	6	
Time /Location:	According to the Timetable	
Teacher:	Prof.ass.dr. Ragip Hadri	
Contact Details:	Email: ragip.hadri@uni-pr.edu www.fn.uni-pr.edu	
Course Description:	This course of Mechanics, is contained of second part – kinematics	
	and the third part dynamics. For learning of kinematics, will be	
	explained material point kinematics and material body kinematics.	
	The dynamic curs will be explained through: material point	
	dynamics, system dynamics and dynamic of the solid body.	
Course Goals:	Introduction of necessary basic knowledges, of Mechanics II, for	
	level of first cycle, of scientific fields of Kinematics and	
	Dynamics.	
Expected Learning Outcomes:	After finishing of this course /learning module/ student will be able	
	to understand and use properly basic kinematics and dynamics	
	notions, in order to solve problems during and after this basic level	
	of studying.	

Student Workload (should be in compliance with student's Learnign Outcomes)				
Activity	Hours	Day/ Week	Total	
Lectures	2	15	30	
Theory/ Lab Work/Exercises	2	15	30	
Practical Work				
Consultations with the teaher	1	15	15	
Field Work				
Test, seminar paper	2	3	6	
Homework	1	15	15	
Self-study (library or home)	2	15	30	
Preparation for final exam	2	10	20	
Assessment time (test, quiz, final exam)	2	2	4	
Projects, presentations, etc.				
Total			150	
Teaching Methods:	Lectures, exercises of	during class using diff	erent materials, one	
	project work in gro	oup of 2-3 students	(independent work),	
	individual homework			
Assessment Methods:	Student attendance 5%			
	First estimation: 25%			
	Home works and oth	er activities 10%		

	Reilable presence 10%	
	Final exam 50 %	
Primary Literature:	 [1] Fetah Jagxhiu: Mekanika – Dinamika, UP, Prishtinë, 1986 [2] Fetah Jagxhiu: Mekanika – Kinematika, UP, Prishtinë, 1980 	
Additional Literature:	[3] Hajdin Berisha: Përmbledhje detyrash të zgjedhura nga	
	Mekanika II,2002	
	FNA. Prishtinë	
Designed teaching plan		
Week 1:	General knowledge on kinematics. Material point kinematics. The ways of	
	movement expression. Definition of point velocity and acceleration.	
Week 2:	Solid body kinematics. Basic movements of solid body. Translative	
	movement, rotation of solid body around static axis	
Week 3:	Plained movement of solid body. Geometric aspect of figure movement on	
	it's plan. Analitic aspect of plane figure movement on it's plan.	
Week 4:	Dynamic concern. Basic understands and definations. Material point	
	dynamics. D'Allamber principle on material point . Differential equation of	
	point movement. Basic duties of material point dinamics.	
Week 5:	General principles of material point dynamics. Princip of momentum	
	changing. Principle on kinetics moment changing. Principle on changing of	
	kinetics energy. Law on mechanical energy conservation.	
Week 6:	Motions at systems with one freedom deggre. Dynamic model . Motions	
	equations. Free motions.	
Week 7:	Impossed motions. Types of dynamic loads. Harmonic motions.	
Week 8:	Seismic reactions of structures. Basic understands on seismic reactions.	
	Spectral analysis. Standard spectrals of elastic reactions. Plastic Spektrals	
	of design and impacting factors.	
Week 9:	Material system dynamics. General principles of material system dynamics.	
	Momentum changing principle. Principle of kinetic changing of moment.	
	Principle on changing of kinetic energy. Conservation law of mechanical	
	energy.	
Week 10:	Solid body dynamics. Inertion moments of solid bodies. Inertion moments	
	for some simple bodies. Basic movements dynamics and general theorems	
	of body dynamics.	
<i>Week</i> 11:	Knowledges on systems of many freedom deggres and on systems with	
	distributed parameters.	
weeк 12:	I orsion of asimetric structures. I wisting movements (oscilation).	
	Movement equations. Free and imposed movements. Dinamic	
14/aak 12:	excentration impact on seismic effects.	
WEEK 13:	Blow theory, basic understandings. Elementar impuls and full impuls.	
	Impact of blow force on material points. Body blow on surface. Blow of body	
	which rotate around static axis. Central normal matches of two bodies.	

Week 14:	Basics of analitical mechanics. Analitical statics. General coordinates and
	freeedom deggre number. Virtual displacements. Virtual forces work. Ideal
	joints. Generalised forces. Virtual works principle.
Week 15:	Equilibrum conditions on general coordinates. Application of virtual works
	principle, on solution of statics problems. Analitical dynamics. General
	equations. D'Allamberit-Lagrange- principle. Canonic Hamilton equations

Academic Policies and Code of Conduct

We start and finish class on time.

Tools used during class must be cleaned and stored away at the end of class.

Mobile/smart phones, and other electronic devices (e.g. iPods) must be turned off (or on vibrate) and hidden from view during class time.

Laptop and tablet computers are allowed for quiet use only; other activities such as checking personal email or browsing the Internet are prohibited.

Note | If a student has more than 3 class assignements evaluated below 50% he/she loses the right on taking the final exam. Evaluation is done from 0-100 %.